admin
pa polynomial_curve_fit_get_coeff "[ [1.0, 2.0], [1.0, 2.2], [1.0, 2.5], [1.2, 2.0], [1.11, 0.9], [5.0, 3.0], [5.2, 3.08], [5.1, 3.0], [5.15, 2.9] ]" "3"
mentdb
"[7.499085083330208,-7.6240029798174,2.4585392371279067,-0.22286556119637468]"
admin
pa polynomial_curve_fit_eval "[7.499085083330208,-7.6240029798174,2.4585392371279067,-0.22286556119637468]" "2"
mentdb
0.30231158263603675
admin
pa polynomial_curve_fit_eval_incr "[7.499085083330208,-7.6240029798174,2.4585392371279067,-0.22286556119637468]" 1 5 0.1
mentdb
[[1.0,2.1107557794443395],[1.1,1.7908802205034604],[1.2000000000000002,1.5054663192661772],[1.3000000000000003,1.2531768823653149],[1.4000000000000004,1.032674716433693],[1.5000000000000004,0.8426226281041327],[1.6000000000000005,0.6816834240094574],[1.7000000000000006,0.5485199107824883],[1.8000000000000007,0.44179489505604863],[1.9000000000000008,0.36017118346295796],[2.000000000000001,0.30231158263603675],[2.100000000000001,0.2668788992081117],[2.200000000000001,0.25253593981199796],[2.300000000000001,0.2579455110805249],[2.4000000000000012,0.2817704196465085],[2.5000000000000013,0.322673472142772],[2.6000000000000014,0.37931747520213843],[2.7000000000000015,0.45036523545742746],[2.8000000000000016,0.5344795595414631],[2.9000000000000017,0.6303232540870649],[3.0000000000000018,0.7365591257270543],[3.100000000000002,0.8518499810942535],[3.200000000000002,0.97485862682149],[3.300000000000002,1.1042478695415756],[3.400000000000002,1.2386805158873448],[3.500000000000002,1.3768193724916014],[3.6000000000000023,1.5173272459871887],[3.7000000000000024,1.658866943006906],[3.8000000000000025,1.8001012701835943],[3.9000000000000026,1.9396930341500633],[4.000000000000003,2.0763050415391433],[4.100000000000002,2.2086000989836396],[4.200000000000002,2.335241013116396],[4.300000000000002,2.4548905905702254],[4.400000000000001,2.5662116379779425],[4.500000000000001,2.6678669619723765],[4.6000000000000005,2.7585193691863505],[4.7,2.836831666252677],[4.8,2.9014666598041945],[4.8999999999999995,2.9510871564737036],[4.999999999999999,2.984355962894039]]
admin
pa xy_scatter "[ [1.0, 2.0], [1.0, 2.2], [1.0, 2.5], [1.2, 2.0], [1.11, 0.9], [5.0, 3.0], [5.2, 3.08], [5.1, 3.0], [5.15, 2.9] ]" "x, y"
mentdb
In editor ...
admin
pa xy_scatter "demo_cm_mysql" "id" "quantity" "select * from products limit 0, 500"
mentdb
In editor ...
admin
pa rl load "reg1" "demo_cm_mysql" "id" "quantity" "select * from products limit 0, 500";
mentdb
1
admin
pa rl load_from_json "reg1" "[ [1.0, 2.0], [2.0, 3.0], [3.0, 4.0], [4.0, 5.0], [5.0, 6.0] ]";
mentdb
1
admin
pa rl load_empty "reg1";
mentdb
1
admin
pa rl exist "reg1"
mentdb
1
admin
pa rl show
mentdb
[<br> "reg1"<br>]
admin
pa rl add_data "reg1" 5 56;
mentdb
1
admin
pa rl slope "reg1"
mentdb
7.25
admin
pa rl intercept "reg1"
mentdb
-11.5
admin
pa rl predict "reg1" 12
mentdb
75.5
admin
pa rl intercept_std_err "reg1"
mentdb
19.764235376052373
admin
pa rl mean_square_error "reg1"
mentdb
390.625
admin
pa rl count "reg1"
mentdb
6
admin
pa rl r "reg1"
mentdb
0.5564589284286688
admin
pa rl sum_squares "reg1"
mentdb
700.8333333333334
admin
pa rl r_square "reg1"
mentdb
0.3096465390279824
admin
pa rl significance "reg1"
mentdb
0.2514643980065754
admin
pa rl slope_confidence_interval "reg1"
mentdb
15.027949957243381
admin
pa rl slope_std_err "reg1"
mentdb
5.412658773652741
admin
pa rl sum_squared_errors "reg1"
mentdb
1562.5
admin
pa rl total_sum_squares "reg1"
mentdb
2263.3333333333335
admin
pa rl x_sum_squares "reg1"
mentdb
13.333333333333334
admin
pa rl slope_confidence_interval "reg1" 0.2
mentdb
51.80063969449396
admin
pa rl close "reg1";
mentdb
1
admin
pa rl close_all;
mentdb
1
admin
pa rm load "reg1" "demo_cm_mysql" "id" "quantity" "" "" "" "price" "select * from products limit 0, 500";
mentdb
1
admin
pa rm load_from_json "reg1" "[ [ 1.0, 23.457 ], [ 2.0, 29.987 ], [ 3.0, 89.987 ], [ 4.0, 99.098 ], [ 5.0, 123.08 ] ]" "[7.5, 9.8, 14.7, 14.7, 19.4]";
mentdb
1
admin
pa rm set_no_intercept "reg1" true
mentdb
1
admin
pa rm calculate_adjusted_r_squared "reg1"
mentdb
0.9930302201822587
admin
pa rm calculate_residual_sum_of_squares "reg1"
mentdb
2.6787094169120644
admin
pa rm calculate_r_squared "reg1"
mentdb
0.9972120880729035
admin
pa rm calculate_total_sum_of_squares "reg1"
mentdb
960.8299999999999
admin
pa rm estimate_error_variance "reg1"
mentdb
1.3393547084560322
admin
pa rm estimate_regressand_variance "reg1"
mentdb
21.746999999999996
admin
pa rm estimate_regression_standard_error "reg1"
mentdb
1.1573049332202954
admin
pa rm estimate_regression_parameters_variance "reg1"
mentdb
[<br> [<br> 1.1939297361248733,<br> -0.6413091167219049,<br> 0.012718472658507332<br> ],<br> [<br> -0.6413091167219049,<br> 1.3402027085716288,<br> -0.04621465840546843<br> ],<br> [<br> 0.012718472658507332,<br> -0.04621465840546843,<br> 0.0017221335163781243<br> ]<br>]
admin
pa rm estimate_residuals "reg1"
mentdb
[<br> -0.21160225532182864,<br> 0.39217249531173515,<br> 0.5051039893042244,<br> -1.3403164432563521,<br> 0.6546422139622123<br>]
admin
pa rm estimate_regression_parameters_standard_errors "reg1"
mentdb
[<br> 1.264553444360703,<br> 1.3397786414221338,<br> 0.04802653051960952<br>]
admin
pa rm estimate_regression_parameters "reg1"
mentdb
[<br> 5.036908634809639,<br> 1.3187573895222953,<br> 0.05780518527475357<br>]
admin
pa rm predict "reg1" "[12, 34]"
mentdb
22.827373608418803
admin
pa rm exist "reg1"
mentdb
1
admin
pa rm show
mentdb
[<br> "reg1"<br>]
admin
pa rm close "reg1";
mentdb
1
admin
pa rm close_all;
mentdb
1